Platelet-Associated Matrix Metalloproteinases Regulate Thrombus Formation and Exert Local Collagenolytic Activity.
نویسندگان
چکیده
OBJECTIVE Platelets are increasingly implicated in processes beyond hemostasis and thrombosis, such as vascular remodeling. Members of the matrix metalloproteinase (MMP) family not only remodel the extracellular matrix but also modulate platelet function. Here, we made a systematic comparison of the roles of MMP family members in acute thrombus formation under flow conditions and assessed platelet-dependent collagenolytic activity over time. APPROACH AND RESULTS Pharmacological inhibition of MMP-1 or MMP-2 (human) or deficiency in MMP-2 (mouse) suppressed collagen-dependent platelet activation and thrombus formation under flow, whereas MMP-9 inhibition/deficiency stimulated these processes. The absence of MMP-3 was without effect. Interestingly, MMP-14 inhibition led to the formation of larger thrombi, which occurred independently of its capacity to activate MMP-2. Platelet thrombi exerted local collagenolytic activity capable of cleaving immobilized dye-quenched collagen and fibrillar collagen fibers within hours, with loss of the majority of the platelet adhesive properties of collagen as a consequence. This collagenolytic activity was redundantly mediated by platelet-associated MMP-1, MMP-2, MMP-9, and MMP-14 but occurred independently of platelet α-granule release (Nbeal2(-/-) mice). The latter was in line with subcellular localization experiments, which indicated a granular distribution of MMP-1 and MMP-2 in platelets, distinct from α-granules. Whereas MMP-9 protein could not be detected inside platelets, activated platelets did bind plasma-derived MMP-9 to their plasma membrane. Overall, platelet MMP activity was predominantly membrane-associated and influenced by platelet activation status. CONCLUSIONS Platelet-associated MMP-1, MMP-2, MMP-9, and MMP-14 differentially modulate acute thrombus formation and at later time points limit thrombus formation by exerting collagenolytic activity.
منابع مشابه
Modified platelet deposition on matrix metalloproteinase 13 digested collagen I
BACKGROUND Atherothrombosis underlies acute coronary syndromes, including unstable angina and acute myocardial infarction. Within the unstable plaque, monocytes express collagenolytic matrix metalloproteinases (MMPs), including MMP-13, which degrades fibrous collagen. Following rupture, vessel wall components including degraded collagen are exposed to circulating platelets. Platelet receptors t...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Generation and role of angiostatin in human platelets
Platelets regulate new blood vessel growth, because they contain a number of angiogenesis promoters and inhibitors. Additionally, platelets contain matrix metalloproteinases (MMPs), which when released mediate platelet adhesion and aggregation, and plasminogen, a fibrinolytic system enzyme that serves to limit blood clot formation. Enzymatic cleavage of plasminogen by MMPs generates angiostatin...
متن کاملRole of matrix metalloproteinases (MMPs) and MMP inhibitors on intracranial aneurysms: a review article
Cerebrovascular disease is one of the leading causes of death in the world, and about one-fourth of cerebrovascular deaths are due to ruptured cerebral aneurysms (CA). Hence it is important to find a way to reduce aneurysm formation and its subsequent morbidity and mortality. Proteolytic activity capable of lysing gelatin has been shown to be increased in aneurysm tissue and expressio...
متن کاملGeneration and role of angiostatin in human platelets.
Platelets regulate new blood vessel growth, because they contain a number of angiogenesis promoters and inhibitors. Additionally, platelets contain matrix metalloproteinases (MMPs), which when released mediate platelet adhesion and aggregation, and plasminogen, a fibrinolytic system enzyme that serves to limit blood clot formation. Enzymatic cleavage of plasminogen by MMPs generates angiostatin...
متن کاملRelaxin enhances the collagenolytic activity and in vitro invasiveness by upregulating matrix metalloproteinases in human thyroid carcinoma cells.
In this study, we identified differential expression of immunoreactive matrix metalloproteinase 2 (MMP2)/gelatinase A, membrane-anchored MT1-MMP/MMP14, and human relaxin-2 (RLN2) in human benign and malignant thyroid tissues. MMP2 and MT1-MMP were detected in the majority of thyroid cancer tissues and colocalized with RLN2-positive cells. MMP2 was mostly absent in goiter tissues and, similar to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 35 12 شماره
صفحات -
تاریخ انتشار 2015